Search results for "MESH: Open Reading Frames"

showing 2 items of 2 documents

Annotation of microsporidian genomes using transcriptional signals

2012

EA GenoSol CT3; International audience; High-quality annotation of microsporidian genomes is essential for understanding the biological processes that govern the development of these parasites. Here we present an improved structural annotation method using transcriptional DNA signals. We apply this method to re-annotate four previously annotated genomes, which allow us to detect annotation errors and identify a significant number of unpredicted genes. We then annotate the newly sequenced genome of Anncaliia algerae. A comparative genomic analysis of A. algerae permits the identification of not only microsporidian core genes, but also potentially highly expressed genes encoding membrane-asso…

Transcription Geneticgenome annotationMESH : Molecular Sequence AnnotationGeneral Physics and AstronomyMESH: PhosphotransferasesGenometranscriptional signalMESH : Protein TransportMESH : Fungal ProteinsDNA FungalConserved SequenceComputingMilieux_MISCELLANEOUSGenetics0303 health sciencesFungal proteinMESH: Conserved SequenceMultidisciplinaryMESH: Genomics030302 biochemistry & molecular biologyGenomicsGenome projectProtein TransportMolecular Sequence Annotation[ SDV.BBM.GTP ] Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]MESH: Genome FungalMESH: Fungal ProteinsMESH : PhosphotransferasesGenome FungalTransposable elementMESH: Protein TransportGenes FungalGenomicsMESH: Molecular Sequence AnnotationMESH : MicrosporidiaMESH : Open Reading FramesComputational biologyBiologyGeneral Biochemistry Genetics and Molecular BiologyFungal ProteinsOpen Reading Frames03 medical and health sciencesMESH : Conserved Sequence[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]Anncaliia algeraeparasitic diseasesGene030304 developmental biologybioinformaticMESH: Transcription GeneticMESH : Genome FungalPhosphotransferasesstructural annotationMESH : GenomicsfungiMESH : Transcription GeneticMolecular Sequence AnnotationGeneral ChemistryMESH: Open Reading FramesMESH: MicrosporidiaMESH: DNA FungalmicrosporidiaMESH : Genes Fungal[INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM]MESH : DNA FungalMESH: Genes FungalNature Communications
researchProduct

Massive presence of insertion sequences in the genome of SOPE, the primary endosymbiont of the rice weevil Sitophilus oryzae

2008

Bacteria that establish an obligate intracellular relationship with eukaryotic hosts undergo an evolutionary genomic reductive process. Recent studies have shown an increase in the number of mobile elements in the first stage of the adaptive process towards intracellular life, although these elements are absent in ancient endosymbionts. Here, the genome of SOPE, the obligate mutualistic endosymbiont of rice weevils, was used as a model to analyze the initial events that occur after symbiotic integration. During the first phases of the SOPE genome project, four different types of insertion sequence (IS) elements, belonging to well-characterized IS families from γ-proteobacteria, were identif…

Sitophilus oryzae (rice weevil)Insecta[SDV]Life Sciences [q-bio]MESH: Genome BacterialMESH: WeevilsEvolution MolecularOpen Reading FramesMESH: Insects:CIENCIAS DE LA VIDA::Microbiología [UNESCO]SOPE (Sitophilus oryzae primary endosymbiont) ; Sitophilus oryzae (rice weevil) ; Insertion sequences (IS) ; EndosymbiosisAnimalsMESH: AnimalsSymbiosisUNESCO::CIENCIAS DE LA VIDA::MicrobiologíaMESH: Evolution MolecularMESH: SymbiosisEndosymbiosisSOPE (Sitophilus oryzae primary endosymbiont)Oryza[SDV.EE.IEO] Life Sciences [q-bio]/Ecology environment/SymbiosisMESH: Open Reading FramesMESH: Oryza sativaInsertion sequences (IS)Mutagenesis InsertionalMESH: GammaproteobacteriaMESH: Mutagenesis Insertional1-1-1 Article périodique à comité de lectureWeevilsGammaproteobacteriaGenome Bacterial[SDV.EE.IEO]Life Sciences [q-bio]/Ecology environment/Symbiosis
researchProduct